How to Model and Solve Energy Optimization Problems

Dr. Alkis Vazacopoulos, Director, Optimization Direct, Inc. (*Harrington Park, New Jersey*)

Acknowledgments

- Susara van den Heever, IBM
- Jeremy Bloom, IBM
- Charles (Chip) Wilkins, IBM
- Robert Ashford (Optimization Direct, Inc.)

Agenda

- Intro Optimization Direct
- CPLEX Optimization Studio
- Energy Applications
- Unit Commitment
- Uncertainty toolbox IBM

Optimization Direct

- IBM Business Partner
- More than 30 years of experience in developing and selling Optimization software
- Experience in implementing optimization technology in all the verticals
- Sold to end users Fortune 500 companies
- Train our customers to get the maximum out of the IBM software
- Help the customers get a kick start and get the maximum from the software right from the start

Which software?

- CPLEX Optimization Studio
- CPLEX is the leader in optimization technology
- CPLEX can handle large scale problems and solve them very fast

Why IBM? Why CPLEX?

- Fast
- Reliable
- IBM software
- Large scale
- Gives you the ability to model develop and solve your decision problem
- Complete solution

How can we help?

- Benchmark your problems?
- Help you with next steps for developing your solution!
- Develop optimization prototypes using OPL

CPLEX Performance

Energy Problems

- Network Planning
- Product Portfolio Planning
- Capital Investment
- Resource Planning
- Unit Commitment/Economic Dispatch
- Optimal Power flow / Security Constrained Dispatch

Unit Commitment Paradigm

- June 1989, Electrical Power Energy, EPRI GS-6401:
 - "Mixed Integer Programming is a powerful Modeling tool,"
 They are , However, theoretical complicated and computationally cumbersome"
- California 7-day model:
- Reported results 1989 machine unknown
 - 2 day model: 8 hours, no progress
 - 7 day model: 1 hour only to solve the LP

CPLEX MIP Performance and the Unit Commitment Paradigm

- California 7-day model
 - 1999 results on a desktop PC
 - CPLEX 6.5: 22 minutes, Optimal
 - 2007 results on a desktop PC
 - CPLEX 11.0: 71 seconds, optimal
- What has happened?
 - CPLEX MIP has become the standard approach for UC applications
 - CPLEX MIP early adopters

CPLEX MIP Performance and the Unit Commitment Paradigm

- What has happened?
 - CPLEX MIP has become the standard approach for UC applications
 - CPLEX MIP early adopters gained a competitive advantage
 - Applications have expanded and changed
 - 1000-2000 generation units simultaneously (Day Ahead Market)
 - Solution Cycles less than 5 minutes (Real Time Market)
 - Uncertainty We start solving problems with
 - Scenario Generation
 - Stochastic
 - Robust

Why we can succeed with CPLEX MIP?

- Computers are faster
- Good model formulations "good modeling"
- Cutting Planes: Valid, redundant inequalities that tighten the linear relaxation
- Heuristics: inexpensive methods for converting a relaxation solution into an integer feasible solution

Computers are faster

- Parallel cores on commodity chips have become standard in recent years
- CPLEX has the best
 - Parallel implementation for Barrier
 - Parallel NonDeterministic MIP
 - Parallel Deterministic MIP (Make the regulators Happy)
- Parallelism is enabled by default

CPLEX – Cuts – Valid Inequalities

- Reduce size of LP feasible region
- Cut out parts where there are no integer solutions
- (Usually) reduce number of integer infeasibilities
 - Improves branching
 - Improves performance of heuristics
- Mostly added during root solve, some added in tree
- Dramatic benefit in overall performance

CPLEX – Cuts – Valid Inequalities

- 1335 models in IBM test set which take ≥ 10 secs and ≤ 10,000 secs
 (Cplex 12.5, Xeon E5430 12 cores 2.66GHZ)
- Fail to solve 28% at all without cuts
- Those that do solve take 6 X longer

Achterberg and Wonderling, 2013

CPLEX - Heuristics

- Attempt to find integer feasible solutions
- (Relatively) quick
- Work either by inspection or by solving a (possibly sequence of) small sub-models
- Can reduce solution times by reduced-cost fixing, root termination during cutting and pruning search tree
- On those 1335 test models
 - 11% fail to solve without heuristics
 - Those that do take 2 X longer

CPLEX- Heuristics

- Useful in their own right if don't require proof of optimality
- Essential for many large models where never get a solution from branching
- Cplex heuristics include
 - local branching
 - RINS
 - feasibility pump
 - (genetic) solution polishing

CPLEX – Model Structure

- CPLEX Optimization Studio
- Write models quickly
- Test
- Debug
- And start deploying

Unit Commitment and the future

- GOAL 1: FERC Meeting (June 2014): most of the new problems involve
 - Stochastic
 - Robust
 - Scenario Based
 - Monte Carlo Simulation and run many problems
- Goal 2: Solve many problems faster
 - Take advantage of the architecture
 - Do better and faster modeling

IBM – Toolbox for Uncertainty Optimization

- Joint Program between IBM Research and Decision Optimization
- If you want more info please contact Optimization
 Direct and we can organize a more detailed Webinar

Planning levels

Examples of decisions

Impact of uncertainty

Uncertainty Toolkit goals

- 2013 Joint Program between IBM Research and Decision Optimization
- Goals
 - Increase customer solution resilience, reliability, and stability
 - Improve trust & understanding of optimization technology
- Our approach
 - Leverage Decision Optimization & mathematical optimization to hedge against uncertainty (e.g. uncertain demand, task durations, prices, resource availability)
 - A user-friendly toolkit as plug-in to Decision Optimization Center
- 5 steps to resilient decisions in the face of uncertainty

Stable decisions, stable profits

- Test examples
 - Supply chain planning for a motorcycle vendor
 2% increase in profits vs. deterministic optimization
 - Inventory optimization for IBM Microelectronics Division
 Greater than 7x increase in feasibility vs. deterministic optimization
- Case studies
 - Energy cost minimization for Cork County Council
 Estimated 30% value-add in cost reduction vs. deterministic optimization
 - Leakage reduction for Dublin City Council
 Estimated 10 times increased stability vs. deterministic optimization
- Other benefits
 - Automated toolkit reduces dependence on PhD-level experts & statistical data
 - Visualize trade-off between multiple KPIs across multiple scenarios and plans

Effect of data uncertainty on decision resilience

"Resilient" how decisions should be

"Veracity"

the data quality decision makers and decision software often assume

"Uncertain" the actual data quality

re·sil·ient1

adjective \ri-'zil-yant\

a: capable of withstanding shock without permanent deformation or rupture

b: tending to recover from or adjust easily to

misfortune or change

ve·rac·i·ty¹

noun \və-¹ra-sə-tē\

: truth or accuracy

un·cer·tain¹

adjective \an-'sar-tan\

: not exactly known or decided : not definite or fixed

: not sure : having some doubt about something

Example Use cases for the Uncertainty Toolkit

Industry	Typical company	Problem type
Government	Government agencies	Project portfolio management
Tourism	Hotel operators, Airlines	Revenue management
Transport	Railroads	Railroad locomotive planning
Transport	Supermarket chain, cement	Delivery / pick-up truck routing
Utilities	Electricity company	Production planning
Utilities	Water company	Tactical reservoir planning
Utilities	Water company	Water distribution network configuration
Utilities	Electricity company	Unit commitment
Utilities	Water network operators	Pump scheduling
Utilities	Water network operators	Pressure management
Utilities	Electricity company	Energy trading
Oil and gas	Oil company	Vessel scheduling
Manufacturing	Manufacturer	Operational project scheduling
Manufacturing	Car manufacturer	Manufacturing line load balancing
Manufacturing	Aircraft manufacturer	Plant assembly
Manufacturing	Car manufacturer	Sales and operations planning
Supply chain	Manufacturer	Contractor to transport leg assignment
Supply chain	Manufacturer	Product to store allocation
Supply chain	Manufacturer, oil&gas	Inventory optimization
Supply chain	Manufacturer, oil&gas	Supply chain network configuration
Supply chain	Manufacturer	Procurement planning
Supply chain	Manufacturer	Emergency operations planning
Commercial	Banks, insurance, TV	Marketing campaign optimization
Finance	Banks	Collateral allocation

5 steps to resilience with the Uncertainty Toolkit

- 1. Define decision model
- 2. Characterize uncertainty
- 3. Generate uncertain model

- 4. Generate decisions
- 5. Analyze trade-offs

- Create optimization model with IBM CPLEX Studio
- Some modeling skill required, or existing assets
- Embed in IBM Decision Optimization Center

"Steve" the IT expert, & "Keith" the OR consultant

- OR consultant's "wizard": 7 screens
- Defines uncertainty, scenario generation, risk measures
- Built-in automated reformulation, based on steps 1 and 2
- No modeling knowledge required
- "Robustification" (make the original model robust to change)
- Business user's "wizard"
- Automated solution generation
- Automated scenario comparison

"Anne" the business user

- Built-in visual analytics
- Analyze KPI trade-offs across multiple plans & scenarios

Uncertainty Toolkit: automated reformulations

Robust / Stochastic approach	Applicabl e model types	Resulting model types	Uncertainty characterizatio n	Restrictions
Single-stage penalty approach	LP	LP (or QP)	Scenarios (finite)	No uncertain data in objective function
(Mulvey et al., 1995)	MILP	MILP (or MIQP)		
Two-stage penalty approach	LP	LP (or QP)	Scenarios (finite)	No uncertain data in objective function
(Mulvey et al., 1995)	MILP	MILP (or MIQP)		
Multistage Stochastic	LP	LP	Scenarios (finite)	None
(e.g. King & Wallace, 2012)	MILP	MILP		
Safety margin approach with	LP	QCP	Range	No uncertain data in standalone parameters or equality constraints
ellipsoidal uncertainty sets (Ben-Tal & Nemirovski, 1999)	MILP	MIQCP		
Safety margin approach with	LP	LP	Range	No uncertain data in standalone parameters or equality constraints
polyhedral uncertainty sets (Bertsimas & Sim, 2004)	MILP	MILP		
Extreme Scenario approach	LP	LP	Range	No uncertain data in variable coefficients
(Lee, 2014)	MILP	MILP		
Distributionally robust	LP	LP	Scenarios	Uncertainty in standalone parameters handled as penalty term in objective
reformulation (Mevissen et al., 2013)	MILP	MILP		

Uncertainty Toolkit: automated reformulations

(Mevissen et al., 2013)

Robust / Stochastic approach	Applicab le model types	Resulting model types	Uncertainty characterizati on	Restrictions
Single-stage penalty approach	LP	LP (or QP)	Scenarios (finite)	No uncertain data in objective function
(Mulvey et al., 1995)	MILP	MILP (or MIQP)		
Two-stage penalty approach	LP	LP (or QP)	Scenarios	No uncertain data in

Q: How do I know which of these methods to use?

A: The Uncertainty Toolkit will decide automatically based on your input into the Consultant's Wizard

The chief confidence in Earlie Confidence						
ellipsoidal uncertainty sets (Ben-Tal & Nemirovski, 1999)	MILP	MIQCP	runge	standalone parameters or equality constraints		
Safety margin approach with polyhedral uncertainty sets (Bertsimas & Sim, 2004)	LP MILP	LP MILP	Range	No uncertain data in standalone parameters or equality constraints		
Extreme Scenario approach (<i>Lee</i> , 2014)	LP MILP	LP MILP	Range	No uncertain data in variable coefficients		
Distributionally robust reformulation	LP MILP	LP MILP	Scenarios	Uncertainty in standalone parameters handled as		

penalty term in objective

Questions

- What is the right model?
- Can we automate the selection of the model?

Question:

• What is the architecture?

Uncertainty Toolkit architecture

Question

Can I automate the reformulation from the deterministic model?

Example: Automated model reformulation for stochastic CP

```
18
19 dvar interval task[i in 1..n] size TaskDuration[i];
20 dvar sequence seq in task types all(i in 1..n) i;
21 dexpr int station[i in 1..n] = startOf(task[i]) div c;
22
23 minimize 1+max(i in 1..n) station[i];
24 subject to {
    noOverlap(seq, Setups);
    forall (p in Precedences)
      endBeforeStart(task[p.pred], task[p.succ]);
27
    forall (i in 1..n)
28
      station[i] == (endOf(task[i]) - 1) div c;
29
30 };
31
```

Input: Deterministic model

Automated model reformulation

Output: Stochastic model

```
OPTIMIZATION
DIRECT
```

```
40 dvar interval task[i in 1..n][s in Scenarios] size TaskDuration[i][s];
41 dvar sequence seq[s in Scenarios] in all(i in 1..n) task[i][s] types all(i in 1..n) i;
43 dexpr int station[i in 1..n][s in Scenarios] = startOf(task[i][s]) div c;
45 minimize sum(s in Scenarios) Probability[s]*(1 + max(i in 1..n) station[i][s]);
46 subject to {
47
48
    forall (s in Scenarios) {
49
      noOverlap(seq[s], Setups);
50
      forall (p in Precedences)
        endBeforeStart(task[p.pred][s], task[p.succ][s]);
51
52
      forall (i in 1..n)
        station[i][s] == (endOf(task[i][s]) - 1) div^{3} &;
53
54
55
56
    forall (s in 1..(S-1), i in 1..n) {
      type0fNext(seq[s], task[i][s], -1) == type0fNext(seq[s+1], task[i][s+1], -1);
57
58
59 };
60
         IBM Confidential
61
```

Question

What is the right Software Platform?

Decision Optimization Center (DOC) is about Decision Support

- DOC for OR (Operations Research) experts: Eclipse-based development environment to create optimization solutions
 - CPLEX Studio embedded for OR needs
 - Data modeling & connections
 - Visualization
 - Custom Java extensions
- DOC for business users: Supports decision making leveraging optimization
 - Scenario-based analysis
 - Manual planning in addition to optimization
 - Alternative business goals
 - Business rules
 - Tradeoff visualization
 - "Freeze" partial solution and solve again

Decision Optimization Center IDE

OPL Model Development

Decision Optimization Center IDE

Configuration of built-in visualization

Decision Optimization Center IDE

Custom Java extensions

Displays using Simple Tables and Charts – out of the box

Pivot Tables and Scenario Comparison – out of the box

Case study: Water treatment/distribution energy cost reduction

- Big picture: Cork County Council must reduce energy consumption by 20% by 2020
- 95% of this utility's water-related energy costs due to pump operations
- New dynamic energy pricing schemes leverage renewables (wind energy)
- Trade-off: Cleaner energy at lower prices, but uncertainty in price due to
 - Wind uncertainty
 - Network outages
 - Other weather conditions
- Goal: Schedule pumps leveraging dynamic prices, while hedging against uncertainty in price prediction

 46

Simplified network (illustration purposes)

Goal: Optimize pump schedules to minimize (uncertain) energy costs while meeting demand and respecting plant and network constraints*

Uncertainty in price prediction

- Forecasted (D-1) post ante price from supplier
 - Considers forecasted demand based on weather, special events, wind, etc.
- Actual (D+4) price charged 4 days after the event
 - Forecasted (D-1) and Settled price (D+4) can differ due to changes in predicted wind energy availability, weather, and unpredicted grid events

Question:

Should utility switch to a dynamic pricing scheme?

Step 1: Prove dynamic pricing benefits

Step 2: Prove

optimization benefits

Step 3: Deal with

uncertainty

Step 1: Define decision model

- Define objective, decisions, constraints (mathematical modeling skill required)
 - Objective: minimize energy costs from pump operations
 - Decisions: when to switch pumps on/off (decided every 30 minutes for 24 hours in advance)
 - Constraints: satisfy tank levels, pump operation rules, customer demand, network constraints
- Model using CPLEX Studio, assuming certain data ("deterministic" model)

Step 2: Characterize uncertainty

- Price scenarios, with likelihoods:
 - From energy provider

DIRECT

From IBM Research forecasts

Step 2: Uncertainty Toolkit wizard for consultant input (1 of 2)

Step 2: Uncertainty Toolkit wizard for consultant input (2 of

Step 3: Generate uncertain model

 Uncertainty Toolkit automatically generates the uncertain model(s) depending on choices in Steps 1 and 2

- Uncertain models are typically classified as
 - "Robust": hedging against worst case outcome(s)
 - "Stochastic": optimizing for expected outcome(s)
 - If choice unclear, use both & visualize trade-offs

Step 4: Generate plans

- Uncertainty Toolkit generates multiple solutions (deterministic, robust, stochastic)
- Uncertainty Toolkit automatically does solution-scenario cross⁵€omparison
 - What is the impact of change on each plan

Step 5: Analyze trade-offs

Benefits of Uncertainty Toolkit – pressure management use case

Pressure management use case:

Water network operational decisions 10 times more stable than current state, continue to perform well when data changes (i.e. "robust" plans)

Benefits of Uncertainty Toolkit – pressure management use case

Benefits of Uncertainty Toolkit – pressure management use case

OPTIMIZACTON feasibility (robustness) by increasing cost

Example: Unit Commitment

Unit Commitment Problem

Given

- Power generation units with
 - Costs (start-up, fuel, CO2)
 - Operational properties (capacity, ramp)
- Demand over several periods

find generation plan

- Which units to use (unit commitment)
- How much to produce (dispatch)

such that

- Demand is satisfied
- Operational constraints are satisfied
- Total cost is minimized

Type ↑ ▼	Name ↑ ▼				
		Linear Operations Cost	Fixed Start Up Cost	Linear Start Up Cost	CO2 Cost
□ Coal	COAL_1	\$22,536	\$5,000	\$208.607	\$30
	COAL_2	\$31.985	\$4,550	\$117.372	\$30
□ Diesel	DIESEL_1	\$40.222	\$560	\$54.417	\$15
	DIESEL_2	\$40.522	\$554	\$54.551	\$15
	DIESEL_3	\$116,331	\$300	\$79.638	\$15
	DIESEL_4	\$76.642	\$250	\$16,259	\$15
⊡ Gas	GAS_1	\$70.5	\$1,320	\$174.117	\$5
	GAS_2	\$69	\$1,291	\$172,754	\$5
	GAS_3	\$32,146	\$1,280	\$95,353	\$5
	GAS_4	\$54.84	\$1,105	\$144.517	\$5

Unit Commitment Problem – Stochastic Version

Problem: How to deal with uncertain loads?

Question:

• Is the dispatch plan still feasible under a slight perturbation of the load?

Stochastic Programming Approach

 Separate decisions into stages to be able to "react" to uncertainty

Decision Stages

- Stage 1: unit commitment
 - "Here-and-now" decisions
- Stage 2: dispatch
 - "Wait-and-see" decisions

Name	ID	Qty	March 2014				
			Wed 12	Thu 13	Fri 14	Sat 15	
🔓 COA	COAL_1	1					
🔓 COA	COAL_2	1					
🔓 GAS_1	GAS_1	1	1 AS_	1 is c AS_	1 is c AS_	1 is c	
🔓 GAS_2	GAS_2	1					
🔓 GAS_3	GAS_3	1					
🔓 GAS_4	GAS_4	1					
🔓 DIES	DIESEL_1	1					
🔓 DIES	DIESEL_2	1					
🔓 DIES	DIESEL_3	1					
🔓 DIES	DIESEL_4	1					

Step 6a: Inspecting the results: Table View

Stochastic Plan is feasible for all scenarios

Step 6b: Solution-Scenario Cross-Comparison

Step 6c: Cross-Comparison: Spinning Capacity

Summary

- Energy applications can benefit from Optimization
- Cplex Optimization Studio can speedup solving your problems and Deployment
- MIP is becoming standard for solving Energy Optimization Problems

References & contact info

References

- A. J. King and S. W. Wallace. Modeling with Stochastic Programming. Springer, 2012.
- J. M. Mulvey, R. J. Vanderbei, and S. A. Zenios, "Robust Optimization of Large-Scale Systems," *Operations Research*, vol. 43, no. 2, pp. 264-281, 1995.
- A. Ben-Tal and A. Nemirovski, "Robust solutions of uncertain linear programs," Operations research letters, vol. 25, no. 1, pp. 1-13, 1999.
- D. Bertsimas and M. Sim, "The price of robustness," *Operations Research*, vol. 52, no. 1, pp. 35-53, 2004.
- C. Lee, "Extreme scenario approach," forthcoming paper, to be presented at the *International Federation of Operational Research Societies (IFORS) conference*, Barcelona, 2014.
- M. Mevissen, E. Ragnoli, and Y. Y. Jia, "Data-driven Distributionally Robust Polynomial Optimization," in Advances in Neural Information Processing Systems, Nevada, United States, pp. 37-45, 2013.

Contacts

- Alkis Vazacopoulos
 - 201 256 7323
 - alkis@optimizationdirect.com
 www.optimizationdirect.com
- Susara van den Heever
 - svdheever@fr.ibm.com

